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How Does Gradient Descent Work?



This talk

• Neural networks are trained using optimization algorithms


• Yet, optimization theory is not used in deep learning.  Why?


• Thesis of this talk:


1. Existing optimization theory does not apply in deep learning … 


2. … but a different kind of theory is possible.


• Goal: convince you to help build the theory of optimization in deep learning



Gradient descent

• The simplest optimizer is deterministic gradient descent (GD):


• Existing theory can’t explain the convergence of even this algorithm


• We must understand GD before we can understand more complex methods

wt+1 = wt − η∇L(wt)



Warm-up: quadratic objective functions

• On quadratics, GD oscillates if the curvature (2nd derivative) is too high


• Consider a 1d quadratic function , with curvature L(x) = 1
2 Sx2 L′ ′ (x) = S

S < 2/η S > 2/η



Warm-up: quadratic objective functions

• For a quadratic in multiple dimensions, curvature is quantified by Hessian


• GD oscillates along Hessian eigenvectors with eigenvalues greater than 2/η



Warm-up: quadratic objective functions

• For a quadratic in multiple dimensions, curvature is quantified by Hessian


• GD oscillates along Hessian eigenvectors with eigenvalues greater than 2/η

Eigenvalue is > 2/η



What about deep learning?

• For DL objectives, can take quadratic Taylor approximation around any 


• Dynamics of GD on this quadratic depend on the top eigenvalue of the 
Hessian , i.e. the sharpness 


• If sharpness , GD would diverge on the quadratic Taylor 
approximation


• This suggests that GD doesn’t function properly if sharpness 

w

H(w) S(w) := λ1(H(w))

S(w) > 2/η

S(w) > 2/η



Gradient descent in deep learning
• Why does gradient descent converge in deep learning?


• Natural idea: sharpness  remains below  throughout training


• i.e. GD stays inside the “stable region” 

S(w) 2/η

{w : S(w) ≤ 2/η}

stable region



Gradient descent in deep learning
• Why does gradient descent converge in deep learning?


• Natural idea: sharpness  remains below  throughout training


• i.e. GD stays inside the “stable region” 

S(w) 2/η

{w : S(w) ≤ 2/η}

stable region

• This is the picture suggested by traditional optimization theory (“L-smoothness”)



Deep learning reality
• Train neural network using GD with  (ViT on CIFAR-10):η = 0.02



Deep learning reality

Quadratic Taylor approximation predicts growing 
oscillations along top Hessian eigenvector

• Train neural network using GD with  (ViT on CIFAR-10):η = 0.02

2/η

GD has left the 
stable region



What happens next?

This quantity is 
predicted to oscillate

Train loss 
goes up

What happens next?

2/η



What happens next?

Hint: look here

magically, sharpness 
drops below !2/η

oscillations 
shrink

Train loss comes 
back down

Mystery: why did the sharpness drop?

2/η



Full gradient descent trajectory

sharpness equilibrates around 2/η
loss decreases 
non-monotonically

2/η



What if we train at a different learning rate?

2/η

• Train same network with smaller learning rate  (orange):η = 0.01



Expectation vs. reality

Expectation Reality

Gradient descent trains at the edge of stability



This behavior is generic across DL settings



This behavior is generic across DL settings

• This is not a weird edge case, it’s the typical behavior of GD in DL



Same phenomenon

Wu, Ma, E.  How SGD Selects the Global Minima in Over-parameterized 
Learning: A Dynamical Stability Perspective.  NeurIPS ’18.

Observation: sharpness at end of training is ≈ 2/η



What’s going on?

Why does gradient descent work in deep learning?

Cohen, Kaur, Li, Kolter, Talwalkar.  Gradient descent on neural networks 
typically occurs at the edge of stability.  ICLR ’21.



The answer

• To understand dynamics of GD, need to Taylor expand to third-order.


• This expansion reveals the key ingredient missing from traditional theory:

Damian*, Nichani*, Lee.  Self-stabilization: the implicit bias of gradient descent 
at the edge of stability.  ICLR ’23.

Oscillations along the top Hessian eigenvector
automatically reduce the top Hessian eigenvalue.



Informal sketch

w

w*

xu
u

current iterate

top Hessian 
eigenvector

Suppose that GD is oscillating
along the top Hessian eigenvector u

How does the gradient  at∇L

without oscillations, 
we’d be here

relate to the gradient at ?w*

w = w* + xu

due to oscillations, 
we’re here

cartoon of weight-space dynamics



Informal sketch

w

w*

xu

current iterate By Taylor expansion around :w*

∇L(w* + xu) =
gradient at w



Informal sketch

w

w*

xu

current iterate By Taylor expansion around :w*

∇L(w* + xu) = ∇L(w*) + O(x)
gradient at w gradient at w*



⏞Informal sketch

w

w*

xu

current iterate By Taylor expansion around :w*

∇L(w* + xu) = ∇L(w*) + H(w*)[xu] + O(x2)
gradient at w gradient at w*

H(w*) u = S(w*)u

= S(w*) x u

• This term sends a negative gradient step computed 
at  towards the  direction.


• This term is causing us to oscillate


• The “magic” comes from the next term in the Taylor 
expansion…

w* + xu −u

Since  is a Hessian eigenvectoru

oscillation



Informal sketch
• The next term in the Taylor expansion is:

1
2 x2 ∇w*[uTH(w*)u] + O(x3)∇L(w* + xu) = ∇L(w*) + H(w*)[xu] +

= S(w*)

gradient at w gradient at w* oscillation

curvature in  directionu

gradient of curvature in  directionu =∇S(w*)



Informal sketch
• The next term in the Taylor expansion is:

1
2 x2 ∇S(w*) + O(x3)∇L(w* + xu) = ∇L(w*) + H(w*)[xu] +

gradient at w gradient at w* oscillation gradient of sharpness

• Thus, a negative gradient step computed at  automatically takes a 
negative gradient step on the sharpness with step size .


• i.e. oscillations automatically trigger reduction of sharpness


• the size of this effect is proportional to the squared magnitude of oscillation


• This is the crucial ingredient missing from the traditional theory.

w* + xu
1
2 ηx2



Let’s revisit the behavior of GD
• When GD exits the stable region:


• it oscillates along the top Hessian eigenvector (as expected)


• these oscillations implicitly perform gradient descent on the 
sharpness (top Hessian eigenvalue)


• this reduces sharpness, thereby steering GD back into the 
stable region



Let’s revisit the behavior of GD

when  is small, 
the effect is small

x

when  grows large, 
the effect becomes 
non-negligible

x



oscillationscurvature

generates

reduce

Traditional theory Deep learning reality

oscillationscurvature

generates

Cause and effect



oscillationscurvature

generates

reduce

Traditional theory Deep learning reality

oscillationscurvature

generates

Cause and effect

• Traditional optimization theory fails to capture the causal structure of the 
optimization process


• GD doesn’t converge because the curvature is “a priori” small — it converges due 
to an automatic negative feedback mechanism that keeps the curvature small.



How can we analyze gradient descent?

• Unfortunately, EOS dynamics are challenging to analyze in fine-grained detail


• Need to track the mutual interactions between oscillations and curvature


• There are frequently multiple unstable eigenvalues => chaotic dynamics
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• There are frequently multiple unstable eigenvalues => chaotic dynamics



How can we analyze gradient descent?

• We argue that the exact oscillatory GD trajectory doesn’t matter


• Rather, what matters is the macroscopic path that GD takes


• This macroscopic path turns out to be much easier to understand


• We only need to understand the oscillations in a statistical sense

Cohen*, Damian*, Talwalkar, Kolter, Lee.  Understanding 
Optimization in Deep Learning with Central Flows.  ICLR ’25.

Alex Damian



What path does gradient descent take?

• The standard continuous-time 
approximation to GD is gradient flow:

dw
dt = − η∇L(w)

• GD follows gradient flow before 
EOS, but then takes a different path 

GD stays inside the 
stable region 
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• Our central flow matches the 
trajectory of GD even at EOS.



What path does gradient descent take?

• The standard continuous-time 
approximation to GD is gradient flow:

dw
dt = − η∇L(w)

• GD follows gradient flow before 
EOS, but then takes a different path 

GD stays inside the 
stable region 

Gradient flow doesn’t

• Our central flow matches the 
trajectory of GD even at EOS.

Central flow matches 
GD even at EOS



Central flow

• The central flow models the time-averaged (i.e. smoothed) GD trajectory



Deriving the central flow

• We derive the central flow using informal mathematical reasoning, and we 
show empirically that this flow matches the real GD trajectory


• In particular:


• We suppose that the time-averaged trajectory can be described by a flow


• We argue that only one flow makes sense (the central flow)


• We show empirically that this flow matches GD in a variety of DL settings



Example: special case of 1 unstable eigenvalue

• We model the iterate as:


• Then the gradient is:


• So the “time-averaged” gradient is:

wt = w(t) + xt ut

∇L(wt) ≈ ∇L(w(t)) + xt S(w(t)) ut + 1
2 x2 ∇S(w(t))

𝔼[∇L(wt)] ≈ ∇L(w(t)) + 𝔼[xt] S(w(t)) ut + 1
2 𝔼[x2]∇S(w(t))

iterate

time-averaged 
iterate

magnitude of 
oscillation

top Hessian 
eigenvector

gradient at iterate

gradient at time-
averaged iterate

oscillation

sharpness reduction

time-averaged gradient

gradient at time-
averaged iterate

oscillation

sharpness reduction

variance of oscillations



Example: special case of 1 unstable eigenvalue

• We suppose that the time-averaged GD trajectory follows an ODE of the form:


• This flow averages out the oscillations, but keeps their effect on the trajectory.


• To determine , we argue that only one value is possible.


• Empirically, the sharpness equilibrates at .


• Therefore, we enforce that along the central flow, .

σ2(t)

2/η
dS
dt = 0

dw
dt

= − η [∇L(w) + 1
2 σ2(t)∇S(w)]

gradient flow

“instantaneous variance” of the oscillations 
(i.e. local time average of )x2

sharpness penalty

2/η



Example: special case of 1 unstable eigenvalue

• The time derivative of the sharpness under our flow is:

= ⟨∇S(w), − η [∇L(w) + 1
2 σ2(t) ∇S(w)]⟩

dS
dt

= ⟨∇S(w),
dw
dt

⟩

= ⟨∇S(w), − η∇L(w)⟩ − 1
2 η σ2(t) ∥∇S(w)∥2

chain rule

substitute in our flow

simplify

• We see that  is affine in .  In order for ,   must be:dS
dt σ2(t) dS

dt = 0 σ2(t)

σ2(t) =
2 ⟨ − ∇L(w), ∇S(w)⟩

∥∇S(w)∥2

time derivative of sharpness 
under gradient flow

sharpness-reduction 
effect of oscillations



Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2



Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2



Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
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sharpness fixed at 2/η

GD oscillates in spurts

central flow “oscillates” 
continuously



Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2

sharpness cycles 
around  under GD2/η

central flow keeps 
sharpness fixed at 2/η

GD oscillates in spurts

central flow “oscillates” 
continuously

distance between GD and 
central flow remains small



Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2

sharpness cycles 
around  under GD2/η

central flow keeps 
sharpness fixed at 2/η

GD oscillates in spurts

central flow “oscillates” 
continuously

distance between GD and 
central flow remains small

distance between GD and 
gradient flow grows



Takeaways

• It’s challenging to understand the oscillations in fine-grained detail


• But the macroscopic trajectory only depends on the variance of the oscillations


• This variance is easy to obtain


• There is only one value that is compatible with the edge of stability equilibrium



Interpretation as projection

• The central flow can be equivalently interpreted as a projected gradient flow:

dw
dt

= − η [I −
∇S(w)∇S(w)T

∥∇S(w)∥2 ]∇L(w)

project out  direction from   
to keep sharpness  fixed in place

∇S(w) ∇L(w)
S(w)

{w : S(w) ≤ 2/η}

loss gradient∇L(w)  ∇S(w)

 
dw
dt



Complete central flow

• Similar to before, we make the ansatz that the time-averaged iterates follow:


where  models the , the covariance of the oscillations.


• We argue that only one value of  is possible.

Σ(t) 𝔼[δtδT
t ]

Σ(t)

dw
dt

= − η [∇L(w) + 1
2 ∇w⟨H(w), Σ(t)⟩]

implicit curvature penalty



Complete central flow

• We impose three conditions on the central flow:


1. The flow should not increase any Hessian eigenvalues above 


2.  should be supported within the Hessian’s  eigenspace


3.  should be positive semidefinite


• These three conditions imply that  must be the solution to a certain cone 
complementarity problem.


• The central flow is defined with this .

2/η

Σ(t) 2/η

Σ(t)

Σ(t)

Σ(t)



Central flow in action



Central flow in action



Central flow can predict oscillation covariance
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Central flow can predict oscillation covariance



Central flow can predict oscillation covariance



Application: reasoning about loss curves

• The gradient descent loss curve is non-
monotonic…



Application: reasoning about loss curves

• … but the central flow loss monotonically 
decreases:


• The central flow loss  is a potential 
function for the optimization process.


• Its slope quantifies the speed of optimization.

L(w(t))

dL(w(t))
dt

≤ 0

• The gradient descent loss curve is non-
monotonic…



Application: reasoning about loss curves

• Loss is higher for GD than for central flow.


• Intuition: GD bounces between “valley 
walls”; central flow runs along “valley floor”

loss is higher up here 

than down here



Application: reasoning about loss curves

• The central flow models both the mean 
trajectory and the covariance of oscillations:

𝔼[L(wt)] ≈ L(w(t)) + 1
η tr Σ(t)

time-averaged 
GD loss

loss along 
central flow

contribution 
from oscillations

wt ≈ w(t) + δt where 𝔼[δt] = 0, 𝔼[δtδT
t ] = Σ(t)

• Thus, it can predict the time-averaged 
train loss of gradient descent:
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Application: reasoning about loss curves

• The central flow models both the mean 
trajectory and the covariance of oscillations:

𝔼[L(wt)] ≈ L(w(t)) + 1
η tr Σ(t)

1
η trΣ(t)

• Both  and  are 
meaningful quantities to DL practitioners

L(w(t)) 𝔼[L(wt)]

time-averaged 
GD loss

loss along 
central flow

contribution 
from oscillations

wt ≈ w(t) + δt where 𝔼[δt] = 0, 𝔼[δtδT
t ] = Σ(t)

• Thus, it can predict the time-averaged 
train loss of gradient descent:



Central flow is the “true” training process



A smooth curve is a simple object

w(t)

wt
• As a smooth curve, the central flow is a 

simple object.



A smooth curve is a simple object

dw(t)
dtw(t)

wt
• As a smooth curve, the central flow is a 

simple object.


• The central flow update direction  reflects 
the near-term direction of motion. 


dw
dt



A smooth curve is a simple object

dw(t)
dt

−η∇L(wt)

w(t)

wt
• As a smooth curve, the central flow is a 

simple object.


• The central flow update direction  reflects 
the near-term direction of motion. 


• By contrast, the GD update  is 
dominated by oscillations.

dw
dt

−η∇L(wt)



Our analysis applies to generic neural nets



Review

• Existing optimization theory does not apply in deep learning


• Doesn’t capture cause and effect for deterministic gradient descent


• But a different theory is possible


• Deep learning objectives aren’t that scary

• Our analysis, while not rigorous, delivers 
accurate numerical predictions

• Deep learning may call for a different 
approach than classical optimization



What is the goal of optimization theory?

• Classically, a common goal is to characterize global rates of convergence.


• But this might never be possible in deep learning


• Another goal is to characterize the local rate of convergence once near a 
minimum


• But deep learning optimization doesn’t occur near a minimum


• Our goal: characterize the local dynamics throughout training


• These dynamics are (1) interesting, (2) important, and (3) generic.



What is the purpose of an optimization paper?

• ML reviewers’ favorite kind of paper: theoretical analysis + new SOTA algorithm


• But we are likely still in the theory-building stage


• Basic research now will enable SOTA algorithm design in the future



What methods are acceptable?

• Optimization historically operates at a 100% level of mathematical rigor


• This standard may not be appropriate for deep learning


• People make assumptions that aren’t true, so that they can leverage known 
proof techniques, rather than investigating what really happens


• The field should be comfortable with works at varying levels of rigor


• The right mathematical tools will develop gradually to fit the needs of the field



A good field to work on

• Deep learning is one of the defining technologies of this century


• Optimization lies at the heart of deep learning


• There is room for an entire field on the theory of optimization in deep learning


• Applied mathematicians can help turn deep learning from alchemy to science



Thanks to my collaborator Alex

Alex Damian

Cohen*, Damian*, Talwalkar, Kolter, Lee.  Understanding 
Optimization in Deep Learning with Central Flows.  ICLR ’25.

OpenReview:

ArXiv: there’s a draft on arXiv, but we’re still 
putting the finishing touches on the final version

Email me for code: jcohen@flatironinstitute.org

mailto:jcohen@flatironinstitute.org


PS: we also analyze Adam with  (i.e. RMSProp)β1 = 0

• This algorithm doesn’t make much sense according to traditional 
understandings, but works well in practice


• How can we beat Adam if we don’t understand it it


• We show that understanding how Adam sets its dynamic preconditioner 
requires understanding its oscillatory EOS dynamics


• We also show that Adam’s efficacy relies on its ability to implicitly steer itself 
towards lower-curvature regions in which it can take lager steps


• Part II of this talk: “How does Adam work?”


• Thanks for listening!


