
Jeremy Cohen · Peking University · Apr 10, 2025

How Does Gradient Descent Work?

This talk

• Neural networks are trained using optimization algorithms

• Yet, optimization theory is not used in deep learning. Why?

• Thesis of this talk:

1. Existing optimization theory does not apply in deep learning …

2. … but a different kind of theory is possible.

• Goal: convince you to help build the theory of optimization in deep learning

Gradient descent

• The simplest optimizer is deterministic gradient descent (GD):

• Existing theory can’t explain the convergence of even this algorithm

• We must understand GD before we can understand more complex methods

wt+1 = wt − η∇L(wt)

Warm-up: quadratic objective functions

• On quadratics, GD oscillates if the curvature (2nd derivative) is too high

• Consider a 1d quadratic function , with curvature L(x) = 1
2 Sx2 L′ ′ (x) = S

S < 2/η S > 2/η

Warm-up: quadratic objective functions

• For a quadratic in multiple dimensions, curvature is quantified by Hessian

• GD oscillates along Hessian eigenvectors with eigenvalues greater than 2/η

Warm-up: quadratic objective functions

• For a quadratic in multiple dimensions, curvature is quantified by Hessian

• GD oscillates along Hessian eigenvectors with eigenvalues greater than 2/η

Eigenvalue is > 2/η

What about deep learning?

• For DL objectives, can take quadratic Taylor approximation around any

• Dynamics of GD on this quadratic depend on the top eigenvalue of the
Hessian , i.e. the sharpness

• If sharpness , GD would diverge on the quadratic Taylor
approximation

• This suggests that GD doesn’t function properly if sharpness

w

H(w) S(w) := λ1(H(w))

S(w) > 2/η

S(w) > 2/η

Gradient descent in deep learning
• Why does gradient descent converge in deep learning?

• Natural idea: sharpness remains below throughout training

• i.e. GD stays inside the “stable region”

S(w) 2/η

{w : S(w) ≤ 2/η}

stable region

Gradient descent in deep learning
• Why does gradient descent converge in deep learning?

• Natural idea: sharpness remains below throughout training

• i.e. GD stays inside the “stable region”

S(w) 2/η

{w : S(w) ≤ 2/η}

stable region

• This is the picture suggested by traditional optimization theory (“L-smoothness”)

Deep learning reality
• Train neural network using GD with (ViT on CIFAR-10):η = 0.02

Deep learning reality

Quadratic Taylor approximation predicts growing
oscillations along top Hessian eigenvector

• Train neural network using GD with (ViT on CIFAR-10):η = 0.02

2/η

GD has left the
stable region

What happens next?

This quantity is
predicted to oscillate

Train loss
goes up

What happens next?

2/η

What happens next?

Hint: look here

magically, sharpness
drops below !2/η

oscillations
shrink

Train loss comes
back down

Mystery: why did the sharpness drop?

2/η

Full gradient descent trajectory

sharpness equilibrates around 2/η
loss decreases
non-monotonically

2/η

What if we train at a different learning rate?

2/η

• Train same network with smaller learning rate (orange):η = 0.01

Expectation vs. reality

Expectation Reality

Gradient descent trains at the edge of stability

This behavior is generic across DL settings

This behavior is generic across DL settings

• This is not a weird edge case, it’s the typical behavior of GD in DL

Same phenomenon

Wu, Ma, E. How SGD Selects the Global Minima in Over-parameterized
Learning: A Dynamical Stability Perspective. NeurIPS ’18.

Observation: sharpness at end of training is ≈ 2/η

What’s going on?

Why does gradient descent work in deep learning?

Cohen, Kaur, Li, Kolter, Talwalkar. Gradient descent on neural networks
typically occurs at the edge of stability. ICLR ’21.

The answer

• To understand dynamics of GD, need to Taylor expand to third-order.

• This expansion reveals the key ingredient missing from traditional theory:

Damian*, Nichani*, Lee. Self-stabilization: the implicit bias of gradient descent
at the edge of stability. ICLR ’23.

Oscillations along the top Hessian eigenvector
automatically reduce the top Hessian eigenvalue.

Informal sketch

w

w*

xu
u

current iterate

top Hessian
eigenvector

Suppose that GD is oscillating
along the top Hessian eigenvector u

How does the gradient at∇L

without oscillations,
we’d be here

relate to the gradient at ?w*

w = w* + xu

due to oscillations,
we’re here

cartoon of weight-space dynamics

Informal sketch

w

w*

xu

current iterate By Taylor expansion around :w*

∇L(w* + xu) =
gradient at w

Informal sketch

w

w*

xu

current iterate By Taylor expansion around :w*

∇L(w* + xu) = ∇L(w*) + O(x)
gradient at w gradient at w*

⏞Informal sketch

w

w*

xu

current iterate By Taylor expansion around :w*

∇L(w* + xu) = ∇L(w*) + H(w*)[xu] + O(x2)
gradient at w gradient at w*

H(w*) u = S(w*)u

= S(w*) x u

• This term sends a negative gradient step computed
at towards the direction.

• This term is causing us to oscillate

• The “magic” comes from the next term in the Taylor
expansion…

w* + xu −u

Since is a Hessian eigenvectoru

oscillation

Informal sketch
• The next term in the Taylor expansion is:

1
2 x2 ∇w*[uTH(w*)u] + O(x3)∇L(w* + xu) = ∇L(w*) + H(w*)[xu] +

= S(w*)

gradient at w gradient at w* oscillation

curvature in directionu

gradient of curvature in directionu =∇S(w*)

Informal sketch
• The next term in the Taylor expansion is:

1
2 x2 ∇S(w*) + O(x3)∇L(w* + xu) = ∇L(w*) + H(w*)[xu] +

gradient at w gradient at w* oscillation gradient of sharpness

• Thus, a negative gradient step computed at automatically takes a
negative gradient step on the sharpness with step size .

• i.e. oscillations automatically trigger reduction of sharpness

• the size of this effect is proportional to the squared magnitude of oscillation

• This is the crucial ingredient missing from the traditional theory.

w* + xu
1
2 ηx2

Let’s revisit the behavior of GD
• When GD exits the stable region:

• it oscillates along the top Hessian eigenvector (as expected)

• these oscillations implicitly perform gradient descent on the
sharpness (top Hessian eigenvalue)

• this reduces sharpness, thereby steering GD back into the
stable region

Let’s revisit the behavior of GD

when is small,
the effect is small

x

when grows large,
the effect becomes
non-negligible

x

oscillationscurvature

generates

reduce

Traditional theory Deep learning reality

oscillationscurvature

generates

Cause and effect

oscillationscurvature

generates

reduce

Traditional theory Deep learning reality

oscillationscurvature

generates

Cause and effect

• Traditional optimization theory fails to capture the causal structure of the
optimization process

• GD doesn’t converge because the curvature is “a priori” small — it converges due
to an automatic negative feedback mechanism that keeps the curvature small.

How can we analyze gradient descent?

• Unfortunately, EOS dynamics are challenging to analyze in fine-grained detail

• Need to track the mutual interactions between oscillations and curvature

• There are frequently multiple unstable eigenvalues => chaotic dynamics

How can we analyze gradient descent?

• Unfortunately, EOS dynamics are challenging to analyze in fine-grained detail

• Need to track the mutual interactions between oscillations and curvature

• There are frequently multiple unstable eigenvalues => chaotic dynamics

How can we analyze gradient descent?

• We argue that the exact oscillatory GD trajectory doesn’t matter

• Rather, what matters is the macroscopic path that GD takes

• This macroscopic path turns out to be much easier to understand

• We only need to understand the oscillations in a statistical sense

Cohen*, Damian*, Talwalkar, Kolter, Lee. Understanding
Optimization in Deep Learning with Central Flows. ICLR ’25.

Alex Damian

What path does gradient descent take?

• The standard continuous-time
approximation to GD is gradient flow:

dw
dt = − η∇L(w)

• GD follows gradient flow before
EOS, but then takes a different path

GD stays inside the
stable region

What path does gradient descent take?

• The standard continuous-time
approximation to GD is gradient flow:

dw
dt = − η∇L(w)

• GD follows gradient flow before
EOS, but then takes a different path

GD stays inside the
stable region

Gradient flow doesn’t

• Our central flow matches the
trajectory of GD even at EOS.

What path does gradient descent take?

• The standard continuous-time
approximation to GD is gradient flow:

dw
dt = − η∇L(w)

• GD follows gradient flow before
EOS, but then takes a different path

GD stays inside the
stable region

Gradient flow doesn’t

• Our central flow matches the
trajectory of GD even at EOS.

Central flow matches
GD even at EOS

Central flow

• The central flow models the time-averaged (i.e. smoothed) GD trajectory

Deriving the central flow

• We derive the central flow using informal mathematical reasoning, and we
show empirically that this flow matches the real GD trajectory

• In particular:

• We suppose that the time-averaged trajectory can be described by a flow

• We argue that only one flow makes sense (the central flow)

• We show empirically that this flow matches GD in a variety of DL settings

Example: special case of 1 unstable eigenvalue

• We model the iterate as:

• Then the gradient is:

• So the “time-averaged” gradient is:

wt = w(t) + xt ut

∇L(wt) ≈ ∇L(w(t)) + xt S(w(t)) ut + 1
2 x2 ∇S(w(t))

𝔼[∇L(wt)] ≈ ∇L(w(t)) + 𝔼[xt] S(w(t)) ut + 1
2 𝔼[x2]∇S(w(t))

iterate

time-averaged
iterate

magnitude of
oscillation

top Hessian
eigenvector

gradient at iterate

gradient at time-
averaged iterate

oscillation

sharpness reduction

time-averaged gradient

gradient at time-
averaged iterate

oscillation

sharpness reduction

variance of oscillations

Example: special case of 1 unstable eigenvalue

• We suppose that the time-averaged GD trajectory follows an ODE of the form:

• This flow averages out the oscillations, but keeps their effect on the trajectory.

• To determine , we argue that only one value is possible.

• Empirically, the sharpness equilibrates at .

• Therefore, we enforce that along the central flow, .

σ2(t)

2/η
dS
dt = 0

dw
dt

= − η [∇L(w) + 1
2 σ2(t)∇S(w)]

gradient flow

“instantaneous variance” of the oscillations
(i.e. local time average of)x2

sharpness penalty

2/η

Example: special case of 1 unstable eigenvalue

• The time derivative of the sharpness under our flow is:

= ⟨∇S(w), − η [∇L(w) + 1
2 σ2(t) ∇S(w)]⟩

dS
dt

= ⟨∇S(w),
dw
dt

⟩

= ⟨∇S(w), − η∇L(w)⟩ − 1
2 η σ2(t) ∥∇S(w)∥2

chain rule

substitute in our flow

simplify

• We see that is affine in . In order for , must be:dS
dt σ2(t) dS

dt = 0 σ2(t)

σ2(t) =
2 ⟨ − ∇L(w), ∇S(w)⟩

∥∇S(w)∥2

time derivative of sharpness
under gradient flow

sharpness-reduction
effect of oscillations

Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2

Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2

Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2

tim
e

average

sharpness cycles
around under GD2/η

central flow keeps
sharpness fixed at 2/η

GD oscillates in spurts

central flow “oscillates”
continuously

Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2

sharpness cycles
around under GD2/η

central flow keeps
sharpness fixed at 2/η

GD oscillates in spurts

central flow “oscillates”
continuously

distance between GD and
central flow remains small

Central flow in action
• The central flow for a single unstable eigenvalue is:

dw
dt

= − η [∇L(w) + 1
2 σ2(t) ∇S(w)] where σ2(t) = ⟨−2∇L(w), ∇S(w)⟩

∥∇S(w)∥2

sharpness cycles
around under GD2/η

central flow keeps
sharpness fixed at 2/η

GD oscillates in spurts

central flow “oscillates”
continuously

distance between GD and
central flow remains small

distance between GD and
gradient flow grows

Takeaways

• It’s challenging to understand the oscillations in fine-grained detail

• But the macroscopic trajectory only depends on the variance of the oscillations

• This variance is easy to obtain

• There is only one value that is compatible with the edge of stability equilibrium

Interpretation as projection

• The central flow can be equivalently interpreted as a projected gradient flow:

dw
dt

= − η [I −
∇S(w)∇S(w)T

∥∇S(w)∥2]∇L(w)

project out direction from
to keep sharpness fixed in place

∇S(w) ∇L(w)
S(w)

{w : S(w) ≤ 2/η}

loss gradient∇L(w) ∇S(w)

dw
dt

Complete central flow

• Similar to before, we make the ansatz that the time-averaged iterates follow:

where models the , the covariance of the oscillations.

• We argue that only one value of is possible.

Σ(t) 𝔼[δtδT
t]

Σ(t)

dw
dt

= − η [∇L(w) + 1
2 ∇w⟨H(w), Σ(t)⟩]

implicit curvature penalty

Complete central flow

• We impose three conditions on the central flow:

1. The flow should not increase any Hessian eigenvalues above

2. should be supported within the Hessian’s eigenspace

3. should be positive semidefinite

• These three conditions imply that must be the solution to a certain cone
complementarity problem.

• The central flow is defined with this .

2/η

Σ(t) 2/η

Σ(t)

Σ(t)

Σ(t)

Central flow in action

Central flow in action

Central flow can predict oscillation covariance

Central flow can predict oscillation covariance

Central flow can predict oscillation covariance

Central flow can predict oscillation covariance

Central flow can predict oscillation covariance

Central flow can predict oscillation covariance

Application: reasoning about loss curves

• The gradient descent loss curve is non-
monotonic…

Application: reasoning about loss curves

• … but the central flow loss monotonically
decreases:

• The central flow loss is a potential
function for the optimization process.

• Its slope quantifies the speed of optimization.

L(w(t))

dL(w(t))
dt

≤ 0

• The gradient descent loss curve is non-
monotonic…

Application: reasoning about loss curves

• Loss is higher for GD than for central flow.

• Intuition: GD bounces between “valley
walls”; central flow runs along “valley floor”

loss is higher up here

than down here

Application: reasoning about loss curves

• The central flow models both the mean
trajectory and the covariance of oscillations:

𝔼[L(wt)] ≈ L(w(t)) + 1
η tr Σ(t)

time-averaged
GD loss

loss along
central flow

contribution
from oscillations

wt ≈ w(t) + δt where 𝔼[δt] = 0, 𝔼[δtδT
t] = Σ(t)

• Thus, it can predict the time-averaged
train loss of gradient descent:

Application: reasoning about loss curves

• The central flow models both the mean
trajectory and the covariance of oscillations:

𝔼[L(wt)] ≈ L(w(t)) + 1
η tr Σ(t)

time-averaged
GD loss

loss along
central flow

contribution
from oscillations

wt ≈ w(t) + δt where 𝔼[δt] = 0, 𝔼[δtδT
t] = Σ(t)

• Thus, it can predict the time-averaged
train loss of gradient descent:

1
η trΣ(t)

Application: reasoning about loss curves

• The central flow models both the mean
trajectory and the covariance of oscillations:

𝔼[L(wt)] ≈ L(w(t)) + 1
η tr Σ(t)

1
η trΣ(t)

• Both and are
meaningful quantities to DL practitioners

L(w(t)) 𝔼[L(wt)]

time-averaged
GD loss

loss along
central flow

contribution
from oscillations

wt ≈ w(t) + δt where 𝔼[δt] = 0, 𝔼[δtδT
t] = Σ(t)

• Thus, it can predict the time-averaged
train loss of gradient descent:

Central flow is the “true” training process

A smooth curve is a simple object

w(t)

wt
• As a smooth curve, the central flow is a

simple object.

A smooth curve is a simple object

dw(t)
dtw(t)

wt
• As a smooth curve, the central flow is a

simple object.

• The central flow update direction reflects
the near-term direction of motion.

dw
dt

A smooth curve is a simple object

dw(t)
dt

−η∇L(wt)

w(t)

wt
• As a smooth curve, the central flow is a

simple object.

• The central flow update direction reflects
the near-term direction of motion.

• By contrast, the GD update is
dominated by oscillations.

dw
dt

−η∇L(wt)

Our analysis applies to generic neural nets

Review

• Existing optimization theory does not apply in deep learning

• Doesn’t capture cause and effect for deterministic gradient descent

• But a different theory is possible

• Deep learning objectives aren’t that scary

• Our analysis, while not rigorous, delivers
accurate numerical predictions

• Deep learning may call for a different
approach than classical optimization

What is the goal of optimization theory?

• Classically, a common goal is to characterize global rates of convergence.

• But this might never be possible in deep learning

• Another goal is to characterize the local rate of convergence once near a
minimum

• But deep learning optimization doesn’t occur near a minimum

• Our goal: characterize the local dynamics throughout training

• These dynamics are (1) interesting, (2) important, and (3) generic.

What is the purpose of an optimization paper?

• ML reviewers’ favorite kind of paper: theoretical analysis + new SOTA algorithm

• But we are likely still in the theory-building stage

• Basic research now will enable SOTA algorithm design in the future

What methods are acceptable?

• Optimization historically operates at a 100% level of mathematical rigor

• This standard may not be appropriate for deep learning

• People make assumptions that aren’t true, so that they can leverage known
proof techniques, rather than investigating what really happens

• The field should be comfortable with works at varying levels of rigor

• The right mathematical tools will develop gradually to fit the needs of the field

A good field to work on

• Deep learning is one of the defining technologies of this century

• Optimization lies at the heart of deep learning

• There is room for an entire field on the theory of optimization in deep learning

• Applied mathematicians can help turn deep learning from alchemy to science

Thanks to my collaborator Alex

Alex Damian

Cohen*, Damian*, Talwalkar, Kolter, Lee. Understanding
Optimization in Deep Learning with Central Flows. ICLR ’25.

OpenReview:

ArXiv: there’s a draft on arXiv, but we’re still
putting the finishing touches on the final version

Email me for code: jcohen@flatironinstitute.org

mailto:jcohen@flatironinstitute.org

PS: we also analyze Adam with (i.e. RMSProp)β1 = 0

• This algorithm doesn’t make much sense according to traditional
understandings, but works well in practice

• How can we beat Adam if we don’t understand it it

• We show that understanding how Adam sets its dynamic preconditioner
requires understanding its oscillatory EOS dynamics

• We also show that Adam’s efficacy relies on its ability to implicitly steer itself
towards lower-curvature regions in which it can take lager steps

• Part II of this talk: “How does Adam work?”

• Thanks for listening!

