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double descent and implicit regularization

overparametrization generalizes well  implicit regularization
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can we defy the bias-variance trade-off?

Geman et al. ’92: ”the fundamental limitations resulting from the
bias-variance dilemma apply to all nonparametric inference

methods, including neural networks”

Because of the double descent phenomenon, there is some doubt
whether this statement is true. Recent work includes
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lower bounds on the bias-variance
trade-off

Similar to minimax lower bounds we want to establish a general
mathematical framework to derive lower bounds on the

bias-variance trade-off that hold for all estimators.

given such bounds we can answer many interesting questions

• are there methods (e.g. deep learning) that can defy the
bias-variance trade-off?

• lower bounds for the U-shaped curve of the classical
bias-variance trade-off
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related literature

• Low ’95 provides complete characterization of bias-variance
trade-off for functionals in the Gaussian white noise model

• Pfanzagl ’99 shows that estimators of functionals satisfying an
asymptotic unbiasedness property must have unbounded
variance

No general treatment of lower bounds for the bias-variance
trade-off yet.
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overview

1 abstract lower bounds for bias-variance trade-off

2 applications to standard nonparametric and high-dimensional
models
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Cramér-Rao inequality

for parametric problems:

V (θ) ≥ (1 + B ′(θ))2

F (θ)

• V (θ) the variance

• B ′(θ) the derivative of the bias

• F (θ) the Fisher information
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abstract lower bounds on bias-variance
trade-off

the well-known hypotheses testing reduc-
tion to prove lower bounds for the min-
imax risk relies on a careful selection
of probability measures P0, . . . ,PM to-
gether with bounds on information dis-
tances such as KL, Hellinger, . . .

• to prove lower bounds for the bias-variance trade-off, we want
to follow a similar approach

• similar as for minimax lower bounds we need to distinguish
the cases M = 1 (linear functionals) and M > 1
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change of expectation inequalities

for two measures P,Q (M = 1), we derived inequalities for the
most common information measures that link the change of

expectation and the variance

Hellinger version: For all random variables X ,

(EP [X ]− EQ [X ])2

4

( 1

H(P,Q)
− H(P,Q)

)2
≤ VarP(X ) + VarQ(X )

with H(P,Q) the Hellinger distance.

How can this be used to prove lower bounds for the bias-variance
trade-off?
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recovering the Cramér-Rao inequality

If P = Pθ and Q = Pθ+∆, then, the inequality

(EP [X ]− EQ [X ])2

4

( 1

H(P,Q)
− H(P,Q)

)2
≤ VarP(X ) + VarQ(X )

becomes (under suitable regularity conditions) the Cramér-Rao
inequality as ∆ ↓ 0 since

H(Pθ,Pθ+∆)2

∆2
=

1

8
Fisher info(θ) + o(∆).
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why we need to generalize

• with two measures, we can only study perturbation in one
direction

• not enough to derive rate optimal lower bounds for
bias-variance trade-off

• we derived two change of expectation inequalities to deal with
multiple probability measures
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change of expectation for multiple
measures

χ2-version:

• probability measures P0, . . . ,PM

• χ2(P0, . . . ,PM) the matrix with entries

χ2(P0, . . . ,PM)j ,k =

∫
dPj

dP0
dPk − 1

• any random variable X

• ∆ := (EP1 [X ]− EP0 [X ], . . . ,EPM
[X ]− EP0 [X ])>

then,

∆>χ2(P0, . . . ,PM)−1∆ ≤ VarP0(X )
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some examples for χ2-matrix

χ2-matrix decodes a form of linear dependence of the measures
P1 − P0, . . . ,PM − P0
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overview

1 abstract lower bounds for bias-variance trade-off

2 applications
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pointwise estimation

Gaussian white noise model: We observe (Yx)x with

dYx = f (x) dx + n−1/2 dWx

• estimate f (x0) for a fixed x0

• C β(R) denotes ball of Hölder β-smooth functions

• for any estimator f̂ (x0), we obtain the bias-variance lower
bound

inf
f̂

sup
f ∈C β(R)

∣∣Biasf
(
f̂ (x0)

)∣∣1/β sup
f ∈C β(R)

Varf
(
f̂ (x0)

)
&

1

n

• bound is attained by most estimators

• generates U-shaped curve
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pointwise estimation (ctd.)

for any estimator satisfying

sup
f ∈C β(R)

|Biasf (f̂ (x0))| . n−β/(2β+1)

we also have that

inf
f̂

sup
f ∈C β(R)

∣∣Biasf
(
f̂ (x0)

)∣∣1/β inf
f ∈C β(R)

Varf
(
f̂ (x0)

)
&

1

n

• much stronger bias-variance trade-off

• sup over bias can never be replaced by inf!
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pointwise estimation of the boundary

For an example of an irregular nonparametric problem consider
support boundary recovery

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

 we observe Poisson point process with intensity n on the
epigraph of an unknown function f and want to recover f
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pointwise estimation of the boundary
(ctd.)

the minimax estimation rate in this model is n−2β/(β+1)

For any estimator f̂ with

sup
f ∈C β(R)

MSEf

(
f̂ (x0)

)
. n−

2β
β+1 ,

we have

sup
f ∈C β(R)

Biasf
(
f̂ (x0)

)2
& n−

2β
β+1

and for all f in the interior of the Hölder ball

Varf
(
f̂ (x0)

)
& n−

2β
β+1
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sequence model

Gaussian sequence model:

• observe independent Xi ∼ N (θi , 1), i = 1, . . . , n

• Θ(s) the space of s-sparse vectors (here: s ≤
√
n/2)

• bias-variance decomposition

Eθ[‖θ̂ − θ‖2] = ‖Eθ[θ̂]− θ‖2︸ ︷︷ ︸
B2(θ)

+
n∑

i=1

Varθ(θ̂i )︸ ︷︷ ︸
V (θ)

• consider s �
√
n

• any estimator attaining the minimax rate s log n has

sup
θ∈Θ(s)

B2(θ) � s log n, sup
θ∈Θ(s)

V (θ) ≥ s

2
.

• lower bounds can be attained, no strict bias-variance trade-off
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sequence model

• consider again s �
√
n

• bias-variance lower bound: if B2(θ) ≤ γs log n, then,

n∑
i=1

Var0

(
θ̂i
)
& n

(s2

n

)4γ

• bound is matched (up to a factor in the exponent) by soft
thresholding

• bias-variance trade-off more extreme than U-shape
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sequence model

• estimation of quadratic functional θ 7→ ‖θ‖2
2

• parameter space

Θ2
n(s) := Θ(s) ∩

{
θ :

n∑
i=1

θ2
i ≤ 2s log

(
1 +

√
n

s

)}
.
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sequence model

• if s �
√
n, then, unbiased minimax rate optimal estimators

exist

• consider now s �
√
n

• minimax rate is s2 log2(n/s2), see Collier et al. ’17

• any estimator ‖̂θ‖2
2 attaining the minimax optimal estimation

rate must satisfy

sup
θ∈Θ2

n(s)

B2(θ) � s2 log2
( n

s2

)
• there exists a minimax rate optimal estimator ‖̂θ‖2

2 with

supθ∈Θ2
n(s) Varθ(‖̂θ‖2

2) . s log(n/s2).

large gap between bias and variance
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L2-loss

Gaussian white noise model: We observe (Yx)x with

dYx = f (x) dx + n−1/2 dWx

• bias-variance decomposition

MISEf

(
f̂
)

:= Ef

[∥∥f̂ − f
∥∥2

L2[0,1]

]
=

∫ 1

0
Bias2

f

(
f̂ (x)

)
dx +

∫ 1

0
Varf

(
f̂ (x)

)
dx

=: IBias2
f (f̂ ) + IVarf

(
f̂
)
.

• is there a bias-variance trade-off between IBias2
f (f̂ ) and

IVarf
(
f̂
)
?

• turns out to be a very hard problem
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reductions for L2-loss

• direct application of abstract lower bound does not seem to
work
• we propose a two-fold reduction scheme

• reduction to a simpler model
• reduction to a smaller class of estimators
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first reduction for L2-loss
Consider the Gaussian sequence model

Xi = θi +
1√
n
εi , i = 1, . . . ,m

• Sβ(R) Sobolev space of β-smooth functions

• Θβ
m(R) := {θ : ‖θ‖2 ≤ R/(Γβm

β)}, Γβ a suitable constant

Reduction: For any estimator f̂ , there exists estimator θ̂, s.t.

sup
θ∈Θβ

m(R)

∥∥Eθ[θ̂ ]− θ∥∥2

2
≤ sup

f ∈Sβ(R)

IBias2
f (f̂ ),

and

sup
θ∈Θβ

m(R)

m∑
i=1

Var
(
θ̂i
)
≤ sup

f ∈Sβ(R)

IVarf
(
f̂
)
.
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second reduction for L2-loss

• a function is spherically symmetric if for any x and any
orthogonal matrix D, f (x) = D−1f (Dx).

• estimator θ̂ = θ̂(X ) is spherically symmetric if X 7→ θ̂(X ) is
spherically symmetric

in the second reduction step we show that the best bias-variance
trade-off is attained for spherically symmetric estimators

• argument in Stein ’56 shows that θ̂ is of the form r(‖X‖2)X
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L2-loss (ctd.)

Bias-variance lower bound: For any estimator f̂ ,

inf
f̂

sup
f ∈Sβ(R)

∣∣ IBiasf (f̂ )
∣∣1/β sup

f ∈Sβ(R)

IVarf
(
f̂
)
≥ 1

8n
,

• many estimators f̂ can be found with upper bound . 1/n
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mean absolute deviation

• several extensions of the bias-variance trade-off have been
proposed in the literature, e.g. for classification

• the mean absolute deviation (MAD) of an estimator θ̂ is

Eθ[|θ̂ −m|]

with m either the mean or the median of θ̂

can the general framework be extended to lower bounds on the
trade-off between bias and MAD?

• derived change of expectation inequality

• this can be used to obtain a partial answer for pointwise
estimation in the Gaussian white noise model
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double descent and implicit regularization

overparametrization generalizes well  implicit regularization
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summary

• general framework to derive bias-variance lower bounds

• leads to matching bias-variance lower bounds for standard
models in nonparametric and high-dimensional statistics

• different types of the bias-variance trade-off occur

• can machine learning methods defy the bias-variance
trade-off? No, there are universal lower bounds that no
method can avoid
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