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can we defy the bias-variance trade-off?

Geman et al. '92: "the fundamental limitations resulting from the
bias-variance dilemma apply to all nonparametric inference
methods, including neural networks”

Because of the double descent phenomenon, there is some doubt
whether this statement is true. Recent work includes
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lower bounds on the bias-variance
trade-off

given such bounds we can answer many interesting questions

® are there methods (e.g. deep learning) that can defy the
bias-variance trade-off?

® lower bounds for the U-shaped curve of the classical
bias-variance trade-off
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related literature

® |Low '95 provides complete characterization of bias-variance
trade-off for functionals in the Gaussian white noise model

® Pfanzagl '99 shows that estimators of functionals satisfying an
asymptotic unbiasedness property must have unbounded
variance
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overview

@ abstract lower bounds for bias-variance trade-off

® applications to standard nonparametric and high-dimensional
models

7/31



Cramér-Rao inequality

for parametric problems:

V/(0) the variance
o B’(@) the derivative of the bias
F(0) the Fisher information
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abstract lower bounds on bias-variance
trade-off

the well-known hypotheses testing reduc-
tion to prove lower bounds for the min-
imax risk relies on a careful selection
of probability measures Py, ..., Py to-
gether with bounds on information dis-
tances such as KL, Hellinger, ...
® to prove lower bounds for the bias-variance trade-off, we want
to follow a similar approach

® similar as for minimax lower bounds we need to distinguish
the cases M =1 (linear functionals) and M > 1
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change of expectation inequalities

for two measures P, Q@ (M = 1), we derived inequalities for the
most common information measures that link the change of
expectation and the variance

Hellinger version: For all random variables X,

(EplX) = EolX)F (1
4 H(P, Q)

with H(P, Q) the Hellinger distance.

— H(P, Q))2 < Varp(X) + Varg(X)

How can this be used to prove lower bounds for the bias-variance
trade-off?
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recovering the Cramér-Rao inequality

If P= Py and Q = Py, then, the inequality

(Ep[X] - EQ[X])z( 1
4 H(P, Q)

— H(P, Q))2 < Varp(X) + Varg(X)

becomes (under suitable regularity conditions) the Cramér-Rao
inequality as A | 0 since

H(Ps, Poin)?

A2 = %Fisher info(6) + o(A).
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why we need to generalize

® with two measures, we can only study perturbation in one
direction

® not enough to derive rate optimal lower bounds for
bias-variance trade-off

® we derived two change of expectation inequalities to deal with
multiple probability measures
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change of expectation for multiple

measures
® probability measures Py, ..., Py
® \2(Py,...,Puy) the matrix with entries
dP;
2 J
X ( 0, ) M)_/’k dPO k

® any random variable X
LIVANRES (EPl[X] — EpO[X], ey EPM[X] — EPO[X])T
then,

ATx?(Po,...,Py)tA < Varp,(X)
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some examples for y2-matrix

distribution x*(Po, ..., Pu)jk
P;j = N(0;,0%14), 0; — 60,0, — 6
(] ] exp((J 00,21c °>)—1

0; € R?, I, identity
P; = ®?:1 Pois(Aje), Xie — Xoe)(Ake — Aoe

eXp(EZi:l( . 02( 0))_1
Aje >0 o¢

BijeBre -1

P, = a_ E 3t)s
) = ®F, Exp(Be) I, Bot (Bre + Bre — Pot)

Bje>0

P; = ®7_, Ber(0¢), (050 — 6oe) (Ore — boe) i1

Hj:l ( 004(1 - 0013) ) -1

0;0 € (0,1)

x2-matrix decodes a form of linear dependence of the measures
Pr—Po,..., Pm — Po
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overview

@ abstract lower bounds for bias-variance trade-off

® applications
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pointwise estimation
Gaussian white noise model: We observe (Yy), with

dYy = f(x) dx + n~Y/2 dWw,

estimate f(xp) for a fixed xg
€5(R) denotes ball of Holder 3-smooth functions

~

e for any estimator f(xp), we obtain the bias-variance lower
bound

inf sup |Biass (F(xo))‘l/ﬁ sup Varg (?(XO)) 2 :

f fegB(R) fesB(R) n

® bound is attained by most estimators

® generates U-shaped curve
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pointwise estimation (ctd.)

for any estimator satisfying

sup | Biass(f(x))| S n~?/(5+1)
fe?¢P(R)

we also have that

o~

inf  sup ! Biasy (f(xo))‘l/ﬁ Vary (f(xo)) >
f fetB(R)

S|

® much stronger bias-variance trade-off

® sup over bias can never be replaced by inf!
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pointwise estimation of the boundary

For an example of an irregular nonparametric problem consider

support boundary recovery

~> we observe Poisson point process with intensity n on the
epigraph of an unknown function f and want to recover f
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pointwise estimation of the boundary
(ctd.)

For any estimator f with

sup MSE¢ (f(xo)) Sn 2+1,
fe6P(R)

=)

™

we have

-~ _ 28
sup Biass (f(xo))2 > n B
fe?B(R)

and for all f in the interior of the Holder ball

Var¢ (f(xo)) 2 B
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sequence model

Gaussian sequence model:
® observe independent X; ~ N(0;,1),i=1,...,n
O(s) the space of s-sparse vectors (here: s < 4/n/2)

® bias-variance decomposition

Eol[16 — 0117 = || Eg[0] — 0112+ > Vare(8))
v =1
BZ(G) —_——
V(0)

consider s < /n

® any estimator attaining the minimax rate slog n has

sup B?(0) <slogn, sup V(6)>
0cO(s) 0eB(s)

NI ©»n

lower bounds can be attained,
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sequence model

consider again s < /n
bias-variance lower bound: if B?() < vslog n, then,

2

> @) 2 o(3)”

bound is matched (up to a factor in the exponent) by soft
thresholding

bias-variance trade-off more extreme than U-shape
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sequence model

® estimation of quadratic functional 6 — ||0||3

® parameter space

©2(s) := O(s) N {9 : ie? < 2slog (1 + \f) }

i=1
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sequence model

if s> \/n, then, unbiased minimax rate optimal estimators
exist

consider now s < /n

minimax rate is s2 log?(n/s?), see Collier et al. '17

any estimator ||0||3 attaining the minimax optimal estimation
rate must satisfy

n
sup B2(f) =< 57 log? (=
0€©2(s) (52>

there exists a minimax rate optimal estimator ||0/|3 with

supgeez(s) Varg(I|0]3) < s log(n/s?).
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[2-loss
Gaussian white noise model: We observe (Yy), with
dYy = f(x) dx + n~Y/2 dWw,
® bias-variance decomposition

MISE¢ (ﬂ = Ef[H?_ in2[o,1]]

~ ~

1 1
= / Bias? (f(x)) dx + / Vars (f(x)) dx
0 0
—: IBias?(f) + IVary (ﬂ

® s there a bias-variance trade-off between IBias,Zc(f) and
Varg (£)?
® turns out to be a very hard problem

24 /31



reductions for L2-loss

® direct application of abstract lower bound does not seem to
work
® we propose a two-fold reduction scheme

® reduction to a simpler model
® reduction to a smaller class of estimators
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first reduction for L2-loss
Consider the Gaussian sequence model

1 .
X;Z@;—I—ﬁz—:,', I:].,...,m

* SA(R) Sobolev space of 3-smooth functions
° O0(R):={0:]6]2 < R/(F3mP)}, I's a suitable constant

Reduction: For any estimator f, there exists estimator 6, s.t.

sup HE9[§]_9H§S sup IBias%(f),

0O (R) fESA(R)
and
m ~ ~
sup ZVar (6;)) < sup IVare (f).
002 (R) i=1 feSA(R)
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second reduction for L%-loss

® 3 function is spherically symmetric if for any x and any
orthogonal matrix D, f(x) = D~1f(Dx).

e estimator § = §(X) is spherically symmetric if X — g(X) is
spherically symmetric

e argument in Stein '56 shows that @ is of the form r(IX|]2)X
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[2-loss (ctd.)

Bias-variance lower bound: For any estimator f,

- 1
inf sup | IBian(f)|1/B sup IVarf (ﬂ > —
f feSA(R) feSB(R) 8n

® many estimators f can be found with upper bound <1/n
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mean absolute deviation

® several extensions of the bias-variance trade-off have been
proposed in the literature, e.g. for classification

® the mean absolute deviation (MAD) of an estimator 0 is
Epl|6 — ml]

with m either the mean or the median of 8

can the general framework be extended to lower bounds on the
trade-off between bias and MAD?

® derived change of expectation inequality

® this can be used to obtain a partial answer for pointwise
estimation in the Gaussian white noise model
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double descent and implicit regularization

error
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summary

general framework to derive bias-variance lower bounds

leads to matching bias-variance lower bounds for standard
models in nonparametric and high-dimensional statistics

different types of the bias-variance trade-off occur

can machine learning methods defy the bias-variance
trade-off?
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